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PKECEDING ?AGE BLANK NOT FILMED- 

THE CALCULATED SPECTRUM OF INVERSE 

COMPTON SCATTERED PHOTONS 

Frank C. Jones 

Lab0 ra to r y fo r  The o r  e t ic a1 S tudi e s 

ABS T RAC T 

We consider an electron of a given energy moving in a mono- 

energetic, isotropic radiation field. The energy spectrum of the pho- 

tons that a r e  scattered by the electron has been calculated both exactly 

and in a greatly simplified approximate form suitable for  astrophysical 

calculations. The approximation may be derived either by expanding 

the exact solution in a small parameter  and keeping only the leading 

t e rms  o r  by employing a simplifying physical approximation a t  the be- 

ginning of the calculation. The approximate spectrum is s imilar  to one 

previously derived by Ginzburg and Syrovatskii, the principal difference 

being that the present one does not break down i f  liw, E >  (me c 2 ) 2  where 

Rw, is the initial photon energy and E the electron energy. We indicate 

the astrophysical applications of our approximate spectrum by calcu- 

lating the spectrum of photons scattered by electrons with an inverse- 

pgwer-law energy distribution. 
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THE CALCULATED SPECTRUM OF INVERSE 

COMPTON SCATTERED PHOTONS 

I. INTRODUCTION 

In recent years the process referred to a s  inverse Compton scat- 

tering has had a revival of interest  among astrophysicists. It was 

introduced in 1947 by Follinl as a mechanism f o r  the loss  of energy of 

cosmic ray electrons and was investigated by Feenberg and Primakoff 2 

and by Donahue3 in this context. 

in many  treatment^^'^ of cosmic ray electrons and the process was 

investigated in some detail by the present author in an ear l ie r  paper.9 

Since that t ime it  has been employed 

It was f i r s t  suggested a s  a source of energetic photons by Savedofflo 

and by Felten and Morrison" and has since received considerable at-  

tention12-19 f rom this point of view. 

spectra to  date have been based on a rather simple approximation. 

has been noted that the average energy transferred to a photon in a 

Compton collision is proportional to the initial energy of the photon and 

the square of the electron energy. 

electron energy i s  reminiscent of the synchrotron process and for this 

reason the radiated photon spectra f o r  a single electron energy i s  ap- 

proximated by a delta function spike a t  the average radiated energy. 

This spectrum is  then folded into the distribution of electron energies 

Most of the calculations of photon 

It 

This dependence on the square of the 
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i o  produce the resultant photon spectrum. Although this method is 

known to give satisfactory results for  synchrotron spectra it is now 

knownzo that the inverse Compton spectra a r e  sufficiently different to  

ra i se  some doubts a s  to i ts  applicability in this area. However, it can 

be shownz1 that in  the case  of inverse power law distributions of eiec- 

t ron energies the method is applicable to both cases  in spite of their  

d iff  e r e nc e s . 
In the present paper we derive exact formulas for the scattered 

photon energy distribution for the case of an electron of energy y = E/mc2  

moving through a region of s?ace filled with a unit density of photons 

distributed isotropically with initial energy al liu,/mc2. We shall 

a lso derive several approximate formulas and discuss their validity 

in  the light of the exact formulas. 

recently published by Baylis et  a1," however, we find that our resul ts  

disagree with theirs in several  respects. 

Similar calculations have been 

In particular we disagree 

with their conclusion that a particular approximate spectrum is of as  

wide a validity as they claim. On the contrary we derive correction 

t e r m s  that become significant when certain conditions of validity f irst  

stated by Ginsburg and Syrovatskiiz a r e  violated. 

In Section LI we derive an approximate spectrum based on a simpli- 

fying physical assumption. 

a lso be discussed from a physical point of view. 

The breakdown of this approximation will 

In Section 111 the 
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scattered spectrum will be calculated exactly and compared (as well 

~ V ~ ~ L U A ~ J  --:I.’ 1 L A w - -  -r ;+h tho --- annrnYimate -rr -_______I__ spectrum. We will see that the exact 

form is often not too useful for computation and the reason for this will 

be discussed. 

exact formula in the small  parameter that causes the trouble. 

provides not only a method f o r  computing the exact spectrum but pro- 

vides a systematic way of rederiving our approximate formula along 

with some correction terms. 

physical implications of these results. 

In Section I V  we shall exhibit a method of expanding the 

This 

In Section V we will discuss some astro-  

3 



11. A N  APPROXIMATE SPECTRUM 

In this section we shall derive an  approximate spectrum by making 

a simplifying physical assumption concerning angles. 

the angles involved in a scattering problem a s  seen in the rest f rame of 

the electron (E. R. f rame) .  

will be primed and energies of the photon before and af ter  collision 

( a l  and a respectively) a s  well as  the electron energy y a r e  understood 

to be in units of the electron r e s t  energy mc2.  

0 '  a r e  measured w i t h  respect to the electron velocity fi  = v/c (strictly 

with respect to minus p ;  al * fl  = - al P c o s  e) .  

place through a polar angle x' and an azimuthal angle 4'  where the all P 

plane is chosen as the 4' = 0 plane. 

Figure 1 i l lust rates  

All quantities a s  measured in this f rame 

The polar angles el'  and 

The scattering takes 

The presence of so  many angles along with the constraining rela-  

It 

To 

tions between them compllcates the problem a s  we shall see later.  

woull greatly simplify things if  we could eliminate some of them. 

this end le t  us examine the angular distribution of the incoming photons 

in the E. R. frame. 

F o r  photons, isotropic and monoenergetic with energy al in the lab 

f rame,  the angular distribution in the E. R. f rame is given by 

d (cos 0;) 
n'  (0;) d(cosO1') = v2 (1 - p  e J 2  

4 



If p 2 1 half of the photons have polar angles within the range 0 5 8  

where 8it,2 

more energetic the incoming photons appear to be more and more like 

a monodirectional beam with 0; = 0. 

5 8L,2 

l / y .  In other words  a s  the electron becomes more and 

The approximation to be made is now obvious; we shall consider 

the electron to be energetic enough so that we may take 8,' = 0. A 

glance at  Fig. 1 shows that in this case x' = 8'  and since the scatter-  

ing c ross  section is independent of the azimuth +' we really have only 

one angle left to  worry about. 

The energy distribution of the photons in the E. R. f rame before 

collision is given by 

f o r  y >> 1 and where S(x;  a ,  b )  is the characterist ic function of the 

interval a ,  b & 

S(x; a, b )  = 1 f o r  a l x l b  

= 0 for  x < a , b < x .  

The Klein-Nishina c ros s  section for  Compton scattering i s  given by 

x 6 ( a '  -f(.;, y')) } ( 3 )  

a 1 ' 2 ( 1  - y ' ) 2  

(1 + y ' 2 )  [l U i ( 1  - y ' ) ]  2 [l + u l ' ( l -  y')] 2 r"' (ltY'*' (1- a ( a ' ,  a ; ,  y' )  = 

5 



where y '  COSX' r o  = e2/mc2 and f (ai, y') - - a l  ' [1+a; (1 

- Y '  )I- 

The number of collisions per unit time t ' is just N '  c 5  and since 

dN/dt = y-' dN/dt' we have after integrating over 4' 

vr: c 
- - d 4  N 

dt  da; da' dy '  2a; Y 2  

- 

) r 2  (1 - y ' ) 2  "1 

(1 + y ' 2 )  [l + a ;  ( 1  - y ' ) ]  G +  1 + y t 2  

[l fa; ( 1 - Y ' ) ] 2  

- 

x a ;  S("' - f ( a ; ,  Y')) s(a;;  u1/23', a1 23') (4) J 
Since da' dal '  dy '  = [l + all (1 - y ' ) I 2  da' dy '  df we may integrate over 

f immediately to obtain 

" I 2  (1 - y ' ) 2  

1 - a '  ( 1 - Y ' )  
- - d3 N 

dt da' dy'  

; a l p ,  2Y (5 )  ) a' a' 

X 1-a' ( 1 - y ' )  s ( 1 - 2  ( 1 - y ' )  

W e  may relate a' to the final lab f rame energy a by the Doppler 

shift formula a' = a/?( 1 -By'). If we introduce the variable 77 = (1 - By' )  

we have 

6 



where we have assumed 1 - y' 

and y 2  = 2n/cl (1  - n/.;v), The integral may be readily performed to give 

7 and where T~ a/2al y 2  (1 - d y )  

where the upper and lower l imits ,  U and L depend on what par t  (if any) 

of the interval ql, T~ l i es  within the l imits  1/2y2 and 2. 

F o r  a l ~ y 2 ( a ~ a l  we have q 1 ( l / 2 y 2  and 1 /2y2(q2(2 .  We then 

have, neglecting te rms  of order  l/y2 o r  l e s s  when compared to  unity. 

In q" + (1 + 2q") (1 - 4") 
% r t  c 

2 
d 2  N 

dt da a ,  Y 2  
In q" + (1 + 2q") (1 - 4") 

% r t  c 
2 

d 2  N 
dt da a ,  Y 2  

where 

a 

4a, y2 ( 1  - a/?) q" = and 

7 



in the above equations we see that the maximum value that u/y can 

have is ( a / y )  max = 4a1 y/(l t 4a1 y) < 1. If 4a1 y << 1 then u/y << 1 and 

we have q" z a/4a1 y2. The last t e r m  in the square brackets may be 

dropped and we a re  lef t  with the approximate spectrum of Ginzburg 

and Syrovatskii.20 

Expression (9) is valid, however, no matter  how large 4al y may 

become. 

However, we must not assume that this approximation is uniformly 

valid. 

a/ul * 1/4y2. 

In fact it turns out that it is not a good approximation f o r  

To see  the reason for  this le t  us consider what would happen if we 

took our assumption that 6'; = 0 seriously and transformed our photon 

energy distribution, Expression (Z) ,  back to the lab frame with no 

scattering at all. We would obtain a spectrum given by 

We can see f rom this that the approximation alone tends to populate the 

region of the spectrum f r o m  a1/4y2 to al with no scattering at all and 

that this region will be exaggerated for  small angle scattering as well. 

In other words, due to  the la rge  sensitivity of the Doppler shift formula 

to slight changes in 8 '  for  small 8' neglect of these small deviations 

of 0'  f r o m  zero  introduces considerable e r r o r  fo r  small  angle scattering. 

8 



Small angle scattering would be, of course, angles of the order of 

' 1  1 7 c r  smaller o r  for y' 2 1 - 1/2y2. Since fo r  most values of a/a1 there 

is a contribution f rom a considerable range of y' other than the region 

1 2 y '  2 1 - 1/2-y2 this e r r o r  will be negligible. 

bottom of the spectrum u/al R 1/4y2 the contribution is entirely from 

the region T, = 1 -fly' * 1/2y2 and here we would expect a significant 

error .  

However, for  the very 

This will be borne out by the results of Section IV. 
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111. EXACT CALCULATION 

In this section we shall calculate i n  closed fo rm the scattered 

photon spectrum for the case of an electron of energy y moving through 

a region of space filled with a unit density of isotropically distributed, 

monoenergetic photons of energy a,. 

first t ransform the incident photon distribution to the E. R. frame and 

formulate the problem in this frame. 

pressed in its lab frame value a and we will integrate over all  available 

angles holding a l ,  Y ,  and a fixed. 

As in the last section we will 

The final energy will then be ex- 

In the E.R. f rame the incident photon distribution has the fo rm 

a ;  ~ [ u l 1 y ( l - p x ' ) - a 1 ]  

al 47~y(1  -,Bx') 
n '  (a,' ,  x') da; dR' = da,' dR' 

where x '  

sion (11) m a y  be obtained by noting that n (a , ,  x) da, dn is a density and 

hence transforms like an energy. If we divide b y  the energy al we ob- 

tain a n  invariant and hence 

c o s @ '  and do '  is the element of solid angle 277dx'. Expres-  

and 

n '  ( . , I ,  x') da,' &' 
- 1  - n ( a l ,  x) dal d.Q 

10 



Expressing al and x i n  terms of a ;  and x'  completes the derivation. 

u p  ( 1  - y ' ) 2  

(1 + y ' 2 )  [I +a1' ( 1 -  y')] 

r t  (I + y ' 2 )  
u(al ' ,  a ' ,  y') dn' ( y ' ) d a '  = 

2[1 +a1' ( 1  -y')] 

x 6 (a' - f ( a i ,  y')) dd' dy' da' . ( 3 )  

Since dN/dt = n' cu/y we have 

r t  c 6 (a; y(1-  px) - al)  
- - 6 p - f (a1', d6 N 

d t d x ' d y '  d+'da, 'da'  4 y 3  ( l - p x ' y  

where we have used the relation ul/a1' = y( 1 -px'). 

ploying the relation da,' = [1 + a ;  ( 1  - y '  )] df we may integrate over f 

immediately. We also note that since z 

+ sin 8 ;  sin x' cos 4' we have 

Once again em- 

2 

cos 8'  = cos 8,' cos x' 

2dz ' 
d+' = 

( l - x ' 2 - y ' 2  - 2 ' 2  + 2 x '  y '  z 1 ) 1 / 2  

11 



With this substitution we now have 

t 

I 

- a l  1 a '  y ( 1 - p x ' )  
- -  0 s [1-  a ' ( 1  - y ' )  d5 N 

d t  dx' dy' d z '  da '  - 2  y3 ( 1 - p x ' ) Z  

(1 - x ' 2  - f 2  - z ' 2  + 2 x '  y '  z ' ) - l / 2  ( 1 3 )  
. '2  ( 1  - y ' ) 2  

['-a' ( l - y ' ) ]  

Transforming a' to Q using the relation 

we have 

where J = 1 - ( x ' ) ~  - ( Y ' ) ~  - ( z ' ) ~  t 2x' y '  z '  

use of 

and where we have made 

12 



F r o m  this point on the object is to integrate over all possible 

va.lues of x ' ,  Y', and z' holding a ,  y and al fixed. 

values for the parameters  a ,  y and al only a certain volume of x' , y', 

z ' space (possibly zero)  will be compatible kinematically with this 

particular choice. 

the Jacobian of the transformation f rom 4' to z '  be rea l  o r  that J 2 0. 

Inspection of the fo rm of J shows that the requirements that I x' 1 ,  1y' I 

and Iz'I be 51 is automatically fulfilled by keeping J l O  unless all 

three variables a r e  simultaneously out of bounds in such a way that 

(x' y' z') > 0. Therefore this requirement need be consciously en- 

forced on only one of the three variables. 

F o r  a given set  of 

This requirement is expressed by the condition that 

It is immaterial  which order we choose in integrating the three 

The first variables and we arbi t rar i ly  choose the order  x', y', 2'. 

integration is trivial because of the delta function and we obtain 

- 

d t d a d y '  dz '  - 2  
a (l-y')l (1-Pz') Y 

(P' J)-1'2 (15) (1 - Y' ) 2  

a 
(1 - P z ' )  [ l - P z ' -  7 (1 -Y'q 

where 

1 3  



- 
Y1 - Y o  - 8 

( f  t J z ' )  ( p  t E p -  1 + F z ' )  - 
yo - ; ( J2  t E 2  f 23EZ') 

1 ' 2  

(19)  p (1 - z ' 2 ) 1 ' 2  [p2 p2 t 2pe(  1 - p )  ( 1 - p z '  ) - ( p  - 1 + p z  I )'] - 
~ ~ __- 

p ( @  t E 2  t 2PEZ') s =  

and ,z = a/cl, E u 1 p .  

The integration over y '  may be facilitated by the transformation 

y '  y o  t 87) where -1 1775 1. We then have 

where a = 1 - P z '  -(a/y)(l - y o )  ; b u8/y. 

Integration of f rom -1 to 1 gives 

yo2 
t 

rrr: cu d3N - - 

d t  da d z  ' 2 y 4 a f ( P 2  t E 2  t 2 P ~ z ' ) ~ ' ~  ( l - / ? z ' ) ( a 2  -b2)1'2 

a2 y2 
t 

2 y O  Y 2 Yo Y a  a y2 
t 

14 



After  some manipulation w e  have 

If we introduce the variable 5 = 1 - p z '  and the following quantities 

E, = (/3' + E 2  + 2 ~ )  - 2 ~ 5  = (1  + ~ ) ~ - 1 / 1 / ' - 2 ~ 5  

the final integration over z '  may be performed in a straightforward 

manner, and after some rearrangement of te rms  we obtain 

where 5 ,  a r e  the upper and lower l imits of the integration in 5 and the 

function F is given by 

- 
2 (1 + aal) 

(7 + Q J 2  - 1 
f,([) = E l - 1 R  k[t 

- 
15  



f o r y - a <  1 

We now turn to the question of determining the limits of integration 

5 * *  These a r e  determined by the requirements that the quantity 6 be 

rea l  and in addition that 1 Z '  5 1 for  we see upon inspection of Expres-  

sion (19) that 6 may be real  for  certain values of z '  that violate this 

condition. These two requirements a re  fulfilled if the quantity 5 l i es  

between the values 1 f 13 called the boundary l ines and simultaneously 

l ies  between the values 

called the boundary curve. It is easy to see that at p = 1 the boundary 

curve intersects  the boundary lines. At p ,  - - l t ( Y - 1 Y Y e  = 1 + (Y - l)/al 

16 



the radical in (28) vanishes and the boundary curve becomes imaginary. 

This clearly represents an absolute upper limit o n p  (the other real  

branch of the boundary curve for  even larger  p can be shown to l ie en- 

tirely in a region of z '  > 1). The physical significance of this limit is 

quite simply seen if we wri te  it as a = al + (y -  1 )  . At this limit the 

scattered photon has picked up of the electrons kinetic energy in 

the collision. 

This limit i s  not usually reached in any situation that will interest  

us since i t  only occurs when the initial photon momentum i s  of the order  

of o r  greater than that of the electron. Figures  Za, 2b and 2c illustrate 

the three different situations that can exist. It is quite obvious that the 

usual situation in astrophysics will be that depicted in Fig. 2a where 

f o r  a < yp the maximum value of p is given by the point 

where the lower boundary curve intersects the upper boundary line; 

1 t y( 1 t p) ]  
1- /[ 

In the relativistic l imit  1 - ,f3 % 1/2y2 and we have 

4al y 2  
1 t 4 U l  y * 

amax or - 4 Y 2  
pc - 1 +4a1 y 

17 



which i s  just  the result  derived in Section 11. 

i s  always given by 

The minimum value of p 

which in the relativistic l imit  is  

P, % 1/4y2 or a min . * ‘x1/4y2 

also a result  of Section 11. 

The formula given in expressions (23-27)  a r e  not very useful in 

most astrophysical applications either for insight, since they a r e  quite 

complex, o r  for  direct  computation since they require that t e rms  of the 

order  of ( ~ / a ) ~  be balanced out to yield a t rue  leading t e r m  of order  

of y % I / a .  

of (“al p) % to obtain an  answer that is correct  to an accuracy of P%. 

Since the quantity aal can often be quite small  direct  application of 

Expressions (23 -27)  is in general not very satisfactory. 

This requires computation to be carr ied out to an accuracy 

In the next section we shall discuss various expansions of the func- 

tion F( <)  which will be useful not only for computing the spectrum to 

any desired order  but a lso fo r  recovering a simple approximation with 

a wide range of validity. 

18 



IV. EXPANSIONS OF EXACT FORMULA 

The chief difficulty in computing directly with our exact formula 

is the fact that the quantity E P  = u/y is often quite small  and appears 

a s  ( ~ p ) - ' ,  (ep) - '  in some of the terms. 

out, namely an  expansion in this o r  some other small quantity. The 

quantity that turns out to be most useful as an expansion quantity is 

E = a l p  This quantity is small  in almost all  physical applications 

and becomes smaller the more energetic the electron. 

This in itself suggests the way 

The first step in this procedure is to expand the functions El-112,  

Ez-112, cosh-' , and sinh-' as power ser ies  in the quantities 2ES/ [ ( l+~)~ - l /? ]  

and 2ep/[y2 ( 1  - ~ p ) '  - 11 5 . 
The expansion in the f i r s t  quantity can be easily shown to be con- 

vergent for  all allowed values of the parameters and the second ex- 

pansion is convergent so long a s  we have the condition 

- m - 51321. for y >> 1 

This will be true in most cases  of interest  and in those situations 

where it i s  not true the expansion will still converge a s  long a s  

E P  < 2 + p - 2 dm'- 0 . 1 7 2  - 0 .146 /y2 ,  y >> 1 

19 



If this condition i s  violated we see that E,C i s  not a small number and 

there i s  no real  need for the expansion. In the following we shall always 

assume that a ,  i s  small  enough that this f i r s t  expansion i s  fairly rapidly 

convergent. 

At this point we have an expression for  the function F( 5 )  of the 

form 

where the t e r m  <"/O 

of cosh-' and sinh- ' .  

a r e  interested in is the quantity F (L,) - F (L-) and such te rms  would 

make no contribution. 

function of E whose dominant t e r m  is of the o r d e r  of E ! " - ~ ! - ~ .  

In  < a r i se s  a s  the leading t e r m  in the expansions 

There a r e  no terms independent of < since all  we 

The coefficient Kn ( E )  i s  a rather complicated 

Kn ( E )  contains the two denominators which a r e  functions of E 

D, = (1 + E ) '  - l /y2 

These denominators appear in half powers of various orders  (typically 

ln1/2) and a r e  the next items on the list to be expanded in E .  

proceeding, however, we must  f i r s t  decide how we a r e  to order  the 

Before 
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quantity p = da,. 

we see that the question hinges on the magnitude of a, y. 

we have 1/4y2 5 p 5 4 y 2  and E << l/y2. We may then consider p to be of 

0(1) and expand in E and E P  a s  well. On the other hand if  a, y z  1 then 

E 2 l /y2 and O( E ) ~p LO( 1 / ~ )  and the quantity E P  ranges from 0 ( E  2, to 

O(1). In this case we must expand in quite a different manner. 

Recalling the limits on p ,  1/4y2 5p(4y2/(1 +4a,y)  

If a, y << 1 

We shall now consider the case where a l  y<< 1 and t reat  EP as O(E). 

F i r s t  noting that 

D, = ( 1 + E ) 2  - l/y2 = ( l + l / y + ~ ) ( l - l / y + ~ )  

we may expand the denominator as  

where 

p+q=n 

and the am ( p )  a r e  the expansion coefficients of 

( 1  -x)-" = c am ( P ) X P  

P 

2 1  



given by 

where am (0) 1 and am (-n) 0. We may also write Pn.m ( l / y 2 )  as 

where p' is the largest  integer not greater than n/2. 

A completely equivalent expansion exists for D, so  our coefficient 

Kn ( E )  m a y  be in turn written a s  a power se r i e s  in E of the fo rm 

If w e  now regroup the t e rms  in powers of E we may write 

M=-2 

F, ( C )  is a ra ther  complex function of 5 but for  completeness we shall 

give its general f o r m  for arbitrary M. First, however, we note that 

the expansion of F( C + )  - F( 5 - )  is obtained by simply replacing 5" by 

5+" - 5-" wherever it appears in F, (5). In what follows we shall use 

22 



the notation 

We may now write the general expression f o r  F, (C+) -F, (5-)  = F,. 

Z ( N +  1) 'h!-N,N+3/2 (1/Y2) ( N  + 1 + N p )  ( N +  2 )  
Z ( N ) -  ( 2 N  f 3) p2 

t 
P3 

+ 1) ( N  + 2 )  (1 + N I P )  
Z ( N  - 1) ( 2 N  + 1) ( 2 N +  3) 

'M-N, N + 112 

F + 

Z ( - N -  1) 

( Y 2 )  N + l  1 + ( - P ) ~  N(N + 1) ( N  + 2 )  y 2  

( y 2 )  ::t{N?g} 

( N  - 1) ( N )  ( N  + 1) ( N +  2 )  
( 2 N -  1) ( 2 N +  3) ' ' W N , N -  1/'2 

2 3  



In deriving the above expression much use has  been made of the recursion 

relations for  the various a_ (p )  coefficients, i.e., 

2N + 2 
a3R ( N t l ) ,  e t c .  

a 1 / 2 ( N )  ( 2 N + l ) ( 2 N + 3 )  

Explicit calculation of the M = - 2,  - 1 te rms  shows that they a r e  identi- 

cally zero  so the leading t e rm in our  expansion is of zero  order  i n € .  

Our se r i e s  may then be written 

It should be noted that there  are t e r m s  with ( - P ) ~  appearing in F, and 

in the case  p O( 1 / ~ )  each t e r m  in the ser ies  will be O ( 1 )  and our 

expansion breaks down completely. 

Although the expression for  F, looks ra ther  formidable, it is a 

straightforward mat te r  to program a computer to evaluate our func- 

tion to any order  in E that is desired. 

It is interesting to examine the zero  order  t e r m  Fo. 
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If we also assume P >> E we have 5, = 1 + P  and to zero order  in E , 

5- = p ( 1 - P )  for ,021 so that 

Z(-1) = - y 2  (1 + P  - P ( 1  - P ) )  P 

Z(2) = 2 1 ( 1 + P l 2  - P ( 1 - p y  

l + P ) 3  - 3 P  3 ( 1-p)3. (37)  
Z(3) = 5 1 ( 

Expressions (36) ,  (37)  and (23)  may be combined to obtain an approxi- 

mate spectrum that i s  valid f o r  ,B >> E and u1 y << 1. 

W e  may further simplify this approximation by assuming that the 

We then have, neglecting electron is relativistic, ,8 * 1, 1 - p  * 1/2y2. 

t e rms  of order l /y2 a s  compared to 1. 

where q = u/(4al y2) . 
and Syrovatskii.20 

This is just the approximate spectrum of Ginzburg 
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1 
Z ( 3 )  = [ p 3 ( 1 t ~ ) 3  - ( 1 - ~ ) 3 1  

Once again neglecting te rms  of order l/y2 we have 

(39)  

where q' = 4y2 p = 4y2 u/al. We note that this is just our approximate 

spectrum, Expression (8) with additional correction te rms  that become 

important a t  the bottom of the spectrum where a/al * l/4y2. These 

correction te rms  a r e  expected on the basis of the discussion a t  the 

end of Section II. 

We now consider :he case where a l  y is of order  unity o r  greater 

and E P  may become of order unity. W e  first note that if al ~2 1 then 
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l/y2 $ e  and it would be inconsistent not to expand in l/y2 as well as 

in E .  

The expansion procedure is very much the same as before. The 

denominators D, and D, (Expression (30)) may be f i r s t  expanded in l/y2 

and then the t e r m  ( 1  + E ) ,  that comes from D, is expanded in E .  The 

t e r m  (1 - ~ p ) ,  arising from 4 , however, is not expanded and all factors 

of p are combined with an E to make t e rms  of 0 (1) .  The resulting ex- 

pressions a r e  then grouped according to the power of E and the power 

of l /y2 to give a double power ser ies  expansion of F ( 5 )  a s  

F(5+) - F(5-) = ) ’ ‘N,P ( l / Y 2 ) N  E P  

N ,P’O 

where FNqP is given by 

P r o  

( 2 N + 2 P - p + 1 )  ( 2 N + 2 P - p + 2 )  
- 2 ( N + P - p + l )  E P  ) Z ( P - p +  1)) (41) 
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+ (1 (1 t 2 ~  -t 2N) - 2m) (1 (1 -t E P )  - ep)3  ) Z ( m - N -  l t  1 (1  + 2 N - 2 m )  ( N - m )  - 
( 1 - - E P )  

(41) con't 

where 

- = 1  i f  m - n  
m, n 

6 

= o  i f  m f !I. 

Once again we examine the lowest order  t e r m  F o , o .  

- - Z ( 1 )  - 2Z(O) 
(1 - E P )  

*) Z ( - l )  (42) 1 - Ep 



To lowest order  in E and l/y2 the boundaries of 5 a r e  given b y  5, 

= 1 t p  * 2 ;  5, = p/2y2 ( l - ~ p )  so we have 

Combining this with Expression (23)  we have 

In  q" + ( 1  + 2q") (1 - q " )  
d2 N 2nr: c 

d t d a  
a1 Y2 

where now 

We see that we have recovered our approximate spectrum of Section I1 

Expression (9). Now, however, it appears  in a complete mathematical 

setting a s  the lowest order  t e r m  in a double expansion in E and l/y2 

where a/al = O( 1,'~). 
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We have seen that the assumption that a/al >> 1 is necessary in 

deriving this  formula. 

imation when we no longer have u/ul = 0 ( 1 / ~ )  but re turn to the region 

where E P  = O ( E ) .  We can see at once from Expression (41) that due to 

t e rms  containing various powers of EP and denominators ( 1  - E P )  to 

various powers that a t e r m  that was originally of a given order  will now 

contain contributions of all higher orders  in E .  

to a given order  this does not cause any loss  of accuracy. 

hurt  is the presence of t e rms  containing ( E,o)-' and ( E P ) - ~ .  

that any given order  now has  contributions from t e r m s  that were  

previously as much a s  two orders  higher. 

approximation we must now include those par t s  of E F , ~  and e 2  F,, that 

contribute to zero  order  in E .  These terms may be found in a straight- 

forward manner and we find that EF,, to zero  order  in  E gives(l/p)(6Z( 1 )  

- 3 Z ( 2 )  - 2 Z ( O ) )  and e 2  F,, gives 

We now may ask  what happens to this zipprex- 

F o r  any approximation 

What does 

This means 

To maintain our zero  order  

I 

- 1 (2(1)-3Z(*) t T Z ( 3 ) )  3 . 
P 2  

These t e r m s  a r e  the same t e rms  in l / p  and l/p2 that appeared in 

Expression ( 3 6 )  (neglecting l/y2). They did not appear in Expression 

(38) ,  however, since they a r e  always at l eas t  ( l /y2) smaller  than the 

leading t e r m  inZ(-1) which is 2y2/p. For that reason they should not 

be included in our present formula. 
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We, therefore,  offer Expression (44) as an approximation to the 

spectrum of inverse Compton scattered photons that is accurate to 

zero order in E and l/y2 f o r  values of a such that a l  I a . 5 4 ~ ~  y2/(l t 4al y )  

and for al y a s  large a s  desired. 

consistent formula in that it always contains contributions from higher 

(and hence negligible) orders  but it is complete in that it always in- 

cludes all zero order contributions. 

Expression (44) is not an entirely 

- 

In the situation where p = O( 1 / ~ )  the exact formula should be ex- 

panded once again, this time considering E / P  = O( 1). However, i f  we 

a r e  interested only in the lowest order  approximation a simple in- 

spection of Expression ( 3 5 )  will suffice. Keeping in mind that for PI 1, 

[(4Y2 P )  - 11 

N ( 2 Y 2 )  
Z(N)  = 

we see that for  every value of M there a r e  te rms  of order  p-' and 

higher but of no lower order. Therefore, Expression (35)  to zero 

order  in E and lowest order  in l/r2 will give us our dominant term. 

This is exactly what we obtained in Expression (40) so we see that 

this formula gives the cor rec t  approximation to lowest orders  in E and 

l/y2 no matter what the magnitude of sly. This could have been ex- 

I 
pected from our discussion in Section II. 
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In Figure 3 we compare the approximate spectrum of Expres- 

- - A n  n (4G) x~c! (44) with a computer calculation of Expression ( 3 5 )  

correc t  to order  E ’ .  We see that the electron does not have to be ex- 

tremely relativistic for  the approximate spectrum to give a good 

repre sentation. 
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V. ASTROPHYSICAL APPLICATIONS 

In astrophysics, inverse Compton scattering provides a mechanism 

for  energy loss  of high energy cosmic r a y  electrons and a source of x 

and y radiation whenever energetic electrons and soft photons exist 

together in a region of space. 

lated exactly by the author in a previous publication.9 However, it 

would be of interest  to see how well our spectrum, Expression (44), 

serves in giving the correct  energy-loss formula. 

spiri t  of our approximation, we shall assume that Expression (44) is 

valid f o r  0 5 q ” 5  1 even though we know it is quite invalid for q” < 1/4y2. 

When we consider effects that depend on the entire spectrum the region 

0 5  q” < 1/4y2 contributes a par t  that is O( l/y2 ) and hence, negligible. 

The energy loss  effect has been calcu- 

In keeping with the 

The energy loss  is given by 

2qM2 In  q” + q “ ( 1  t 2 q “ )  ( 1 - q “ )  + 

= *T I: {( 1 + b q t o 3  ( 1  + bq”)3  

where crT = (8/3)m: and b = 4a1y. 

in a straightforward manner to give, after some rearranging of terms. 

The indicated integrals a r e  performed 
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- (E b 3  + 6 b 2  +9b  + 4  ( 1  + b ) - 2  ) 

where L i ,  is the dilogarithm. If we make the substitution b = 2a we 

have 

F(a)  = y ( a + 6 + 3 / a ) l n ( l  t 2 a )  [ 
- (+ a 3 + 2 4 a 2  t 1 8 a t 4  ( 1 + 2 a ) - 2  ) 

- 2 - Xi ,  (-2a) (47) 1 
This expression may be directly compared to  Expressions ( 1 3 )  and (14) 

of Reference (9). It can be seen that the present result is equal to that 

previously calculated (for the mono-energetic background case) i f  one 

sets  E = l/y2 = 0. in the exact formula. 

In considering inverse Compton scattering a s  a source of x and Y 

rays we a r e  interested in the radiation f rom electrons with a wide 
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distribution of energies. In astrophysics the inverse power law is one 

of the most commonly occurring distributions so we shall consider 

the spectrum 

If we note that 

where p = aa we may write Expression (48) as 1 

where 
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It is easy to see that fo r  p = "al  << 1, F(p, r) i s  essentially independent 

or' p aiid -*-e ob+,&in 

This i s  just the well known approximate spectrum of Felten and 

Morrison which they obtained by approximating d2 N/dt d a  by a delta 

function 6 ( a -  4/3al  y 2 )  . It can be shown21 that this spectrum is a good 

approximation fo r  a much more general assumption about the form of 

d2N/dt da than that made by Felten and Morrison. 

F o r  p >> 1, on the other h a ~ d  there is no expansion in powers of p 

o r  inverse powers of p that will be valid f o r  the erLtire range of the 

integration in q:I 

pieces a s  

However, the integral may be broken up into two 

and appropriate expansions made i n  each range. 

p may be extracted and after a certain amount of re-summing of 

The leading t e rms  in 
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coefficients we obtain the assymptotic f o r m  of F(p,  r) for  p > >  1 a s ,  

where unfortunately 

Inserting (52) in (49) we have for the case a > >  (al)-' 

C' 

a l  
R ( a )  - - (In aal  +c(r)) (54) 

c(r) may be computed by aumerical  integration and is plotted in Fig. 4. 

In the intermediate region p * 1 F(p,  r)  must be computed numeri-  

cally. In Fig. 5 we have plotted F(p,  r) as a function of P for various 

values of r and in  Fig. 6 we have the complete spectra  R ( c )  for the 

same values of r. 
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F I G U R E  CAPTIONS 

Figure 1. Angles involved in the scattering process a s  viewed in the 

electron r e s t  frame. 

Integration boundaries of the variable < drawn a s  a function 

of p = a/’21. 

Figure 2. 

(For  illustration only - not an accurate plot.) 

Figure 3. Comparison of approximate and exact expressions for scat-  

tered spectrum f rom rnono-energetic electrons. 

photon energy a l  = Electron energy is y and D 

= Max [approxjexact - l] 

Initial 

a. Y = 2 ,  D = .54 

b. -y = 9, D = - 0 2 4  

c. y = 18, D = .0055 

Figure 4. Plot of C(T) versus r. 

Figure 5. Plot of F(p,  r) as a function of p for  r = 2 ,  2.5, and 3. 

Figure 6. Plot of R ( a )  as a function of a for  r = 2 ,  2.5 and 3. 
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